Community Participation

The Guntersville Water Board's business office is located at 329 Gunter Avenue in the City Municipal Building. Our business hours are 8:00 a.m. to 4:30 p.m., Monday-Friday. We have monthly Board of Directors meetings that are open to the public the first Monday of each month at 6:00 p.m. in the City Municipal Building.

Our telephone numbers are: Office (256) 582-5931 Nights-Weekends-Holidays (256) 506-9000 Fax (256) 582-6923

www.gvillewater.com

OUR **STAFF**

Board of Directors Jerry A. Nabors Frank J. Richter, Jr. L. Dwain Elder

Office

Anita Brown Meg Smith Debbie Sutton Jack Swann

Meter Readers Jason Carroll Allen Walker

Maintenance

Phillip Bishop Jeff Davis Caleb Graham Josh Hill Brian Norrell

Water Treatment John Banks James Conn Mike Esslinger Scott Martin Mitchell Redington Coy Starnes

Wastewater Mark Bevill

Mark Helton Jim Matthews Jim Murphee Jimmy Raines Mike Spurgeon

d from January t our compliance cemplary. Water 5 ommitmen eased ontinui unters Quality As alwa throug

Guntersvil **Annual Water** Quality Report

Guntersville Water Board Guntersville, AL 35976 329 Gunter Ave.

Ŭ

Water Notes

Guntersville relies on surface water from the Tennessee River Brown's Creek embayment on Lake Guntersville at Sunset Treatment Plant and one groundwater well for our drinking water supply. We also purchase water from MUB-Albertville (surface water from Short Creek) to supply to our customers on Sand Mountain. Guntersville Water Board supplies drinking water to the customers of Asbury Water Authority in the Asbury-Martling community.

Number of Customers:	Approximately 4300
Storage Capacity:	10 tanks (4,950,000 gls)
Distribution System:	120 miles of water mains

We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. For more information regarding this report, or for any questions relating to your drinking water, please call Jack Swann, General Manager, at 256-582-5931.

Safe Drinking Water Act

The Safe Drinking Water Act (SDWA) was signed into law on December 16, 1974. The purpose of the law is to assure that the nation's water supply systems serving the public meet minimum national standards for the protection of public health. The SDWA directed the U.S. Environmental Protection agency (EPA) to establish national drinking water standards. The 1996 Amendments to the SDWA created a need for Consumer Confidence Reports (Annual Water Quality Reports) to reveal to consumers the detected amounts of contaminants in their drinking water.

Required Consumer Confidence Report (CCR) statement addressing Lead in Drinking Water

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Guntersville Water Board is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water hotline or at www.epa.gov/safewater/lead.

www.gvillewater.com

Can you believe it takes gallons to ...

Produce one ear of corn	15
Grow wheat for one loaf of bread	100
Refine one pound of sugar	16
Take a shower	51
Manufacture one pound of steel	31
Manufacture one pound of plastic	24
Manufacture one tire	520
Refine a barrel of oil	1,851
Manufacture a car	39,000
Supply an average household for a year	107,000

Bill Payment

For your convenience, you can pay your bill in a variety of ways:

Bank Draft – Your payment is automatically withdrawn from your bank account on the 10th of each month. Please call the office to sign up.

Online – You can visit our website at gvillewater.com to pay your bill by debit or credit card. You will need your account number and balance from your statement. There is a service fee for each transaction.

Night Deposit – This is located at the Water Board office entrance at 329 Gunter Avenue. You may also leave your payment at the Marshall County Gas Board.

By Mail or In Person -

Guntersville Water and Sewer Board 329 Gunter Avenue Guntersville, AL 35976

Source Water Assessment

In compliance with the Alabama Department of Environmental Management (ADEM), Guntersville Water Board has completed a Source Water Assessment plan that will assist in protecting our water sources. This plan provides additional information such as potential contaminants as high, moderate, or non-suspectible to contamination of the water source.

Public notification has been completed and the plan has been approved by ADEM. A copy of the report is available in our office for review during normal business hours, or you may purchase a copy upon request for a nominal reproduction fee.

At the end of this report, find a list of Primary Drink Water Contaminants and a list of Unregulated Contaminants for which our water system routinely monitors. These contaminants were not detected in your drinking water unless they are listed in the Table of Detected Drinking Water Contaminants.

TABLE OF DETECTED DRINKING WATER CONTAMINANTS

Contaminants	Violation Y/N	Level Detected Water Plant	Level Detected Well	MCLG	MCL	Likely Source of Contamination
Chlorine	No	Range 1.8-2.7	Range 2.4-2.9	MRDLG =4	MRDL =4	Water additive used to control microbes
Turbidity (NTU) N	ot Required	Highest 0.24 100% <0 0.5	Not Required	N/A	Π	Soil Runoff
Total Organic Carbon	(ppm) No	2.2-2.7	N/A			Soil Runoff
Copper (ppm)	No	0.230* 0 >Action Level	0.230* 0 >Action Level	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Fluoride (ppm)	No	0.59	1.03	4	4	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Nitrate (ppm)	No	0.41	1.23	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Tetrachloroethylene (p	pb) No	ND	0.60	0	5	Discharge from metal degreasing sites and other factories
TTHM [Total trihalomethan	es] (ppb) No	Avg. 47.1 Range 1.88-114	Avg. 47.1 Range 1.88-114	0	80	By-product of drinking water chlorination
HAA5 [Total haloacetic aci	ds] (ppb) NO	Avg. 31.3 Range ND-74.6	Avg. 31.3 Range ND-74.6	0	60	By-product of drinking water chlorination
Unregulated Cont	aminants					
Chloroform (ppb)	No	11.1	2.05	N/A	N/A	Naturally occurring in the environ- ment or as a result of industrial discharge or agricultural runoff
Bromodichloromethane (ppb) No	4.08	ND	N/A	N/A	Naturally occurring in the environ- ment or as a result of industrial discharge or agricultural runoff
Chlorodibromomethane	No	0.75	ND	N/A	N/A	Naturally occurring in the environ- ment or as a result of industrial discharge or agricultural runoff
Secondary Contan	ninants					
Chloride	No	13.1	8.76	N/A	250	Naturally occurring in the environment or as a result of agricultural runoff
Hardness	No	74.0	100	N/A		Naturally occurring in the environment or as a result of treatment with water additives
Manganase	No	ND	0.04	N/A	0.05	Erosion of natural deposits; leaching from pipes
рН	No	6.38	7.19	N/A	N/A	Naturally occurring in the environment or as a result of treatment with water additives
Sulfate (ppm)	No	25.4	1.57	N/A	250	Naturally occurring in the environment or as a result of industrial discharge or agricultural run-off
Total Dissolved Solids (p	pm) No	112	140	N/A	500	Naturally occurring in the environment or as a result of industrial discharge or agricultural run-off

*Figure shown is 90th percentile and # of sites above action level (1.3 ppm) = 0

As you can see by the above table, our system had no violations. We have learned through our monitoring and testing that some constituents have been detected. The EPA has determined that your water IS SAFE at these levels. We are pleased to report that our drinking water is safe and meets federal and state requirements. This report shows our water quality and what it means.

		-	*			-	,	
Initial Distribution System Eval	uation	Feb. 2008 - Aug	. 2009					
TTHM [Total trihalomethanes]	NO	Range 21.2-74.3	ppb		0	80	By-production	uct of drinking water rion
HAA5 [Total haloacetic acids]	NO	Range 14.6-93.6	ppb		0	60	By-production	uct of drinking water ion
Standard List of Primary Drinking	Water (Contaminants						
Contaminant Bacteriological Contaminants	MCL	Unit of Msmt.		Coi Organi	ntaminant c Contamir	nants	MCL	Unit of Msmt.
Total Coliform Bacteria Fecal Coliform and E. coli Turbidity Radiological Contaminants	<5% 0 TT	present or absent present or absent NTU	2, 2, Ac Alu Be	4-D 4,5-TP rylamid achlor nzo(a)	(Silvex) le pyrene [PAHs]		70 50 TT 2 2000	ppb ppb ppb ppt
Beta/photon emitters Alpha emitters Combined radium Uranium	4 15 5 30	mrem/yr pCi/l pCi/l pCi/l		irbotura ilordane ilapon (2-ethy (2-ethy noseb	n e /lhexyl)adipate /lhexyl)phthala	te	40 2 200 400 6 7	рро ррб ррб ррб ррб ррб
Antimony Arsenic Asbestos Borium Beryllium Cadmium Chromium Chromium Copper Cyanide Elead Mercury Nitrate Endothall Endrin Epichiorohydrin Glyphosate Heptachlor Heptachlor denoxide Hexachlorobenzene Hexachlorobenzene Hexachlorocyclopentadiene Lindane Methoxychlor	6 10 7 2 4 5 100 AL=15. 2 10 100 2 2 11 700 400 200 1 50 200 400	ppb ppb MFL ppm ppb ppb ppb ppb ppm ppb ppb ppb ppb	Di CC CC CC CC CC CC CC CC CC CC CC CC CC	quat oxin [2, iloramir ilorite M5 [Toi 1-Dichli 5-1,2-D nns-1,2- chloror 2-Dichli 7,2-Dichli nyllenz trachlor 1,1-Tric 1,2-Tric chloroe HM [To luene nyl Chlor lenes ilorine lorine lorine omate	3,7,8-TCDD] tes tal haloacetic c oroethylene cichoroethylene Dichloroethylene ene tilbromide oethylene chloroethane thoroetha	ine	$\begin{array}{c} 20\\ 20\\ 4\\ 1\\ 60\\ 7\\ 70\\ 100\\ 5\\ 5\\ 700\\ 55\\ 700\\ 50\\ 100\\ 5\\ 200\\ 5\\ 5\\ 80\\ 1\\ 2\\ 10\\ 4\\ 800\\ 10\\ 10\\ \end{array}$	ррр Picograms/I ррт ррб ррb ррb ррb ррb ррb ррb ррb

Definitions

In this report you may find many terms and abbreviations with which you might not be familiar. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant that, if exceeded, triggers treatment or other requirements which a water system must follow.

Coliform Absent (ca) - laboratory analysis indicates that the contaminant is not present.

Disinfection byproducts - are formed when disinfectants used in water treatment plants react with bromide and/or natural organic matter (i.e, decaying vegetation) present in the source water. Different disinfectants produce different types or amounts of disinfection byproducts. Disinfection byproducts for which regulations have been established include trihalomethanes (TTHM), haloacetic acids (HAA5), bromate, and chlorite.

Initial Distribution System Evaluation (IDSE) - a one-time study conducted by water systems to identify distribution system locations with high concentrations of trihalomethanes (THMs) and haloacetic acids (HAAs). Water systems will use results from the IDSE, in conjunction with their Stage 1 DBPR compliance monitoring data, to select compliance monitoring locations for the Stage 2 DBPR.

Maximum Contaminant Level – (mandatory language) The Maximum Allowed (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal - (mandatory language) The Goal (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Millirems per year (mrem/yr) - measure of radiation absorbed by the body.

Nephelometric Turbidity Unit (NTU) - a measure of the clarity of water. Turbidity in excess of 5 NTU is just noticeable to the average person.

Non-Detects (ND) - laboratory analysis indicates that the constituent is not present

Not Required (NR) - laboratory analysis not required due to waiver granted by the Environmental Protection Agency for the State of Alabama

Parts per billion (ppb) or Micrograms per liter – one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per quadrillion (ppq) or Picograms per liter (picograms/l) one part per quadrillion corresponds to one minute in 2,000,000,000 years, or a single penny in \$10,000,000,000,000

Parts per trillion (ppt) or Nanograms per liter (nanograms/I) - one part per trillion corresponds to one minute in 2,000,000 years, or a single penny in \$10,000,000,000.

Picocuries per liter (pCi/L) – picocuries per liter is a measure of the radioactivity in water.

Treatment Technique (TT) - (mandatory language) a required process intended to reduce the level of a contaminant in drinking water.

Variances & Exemptions (V&E) - State or EPA permission not to meet an MCL or a treatment technique under certain conditions.

Monitoring Schedule

Guntersville Water Board routinely monitors for constituents in your drinking water according to Federal and State laws. Our report shows that during the past year, the water delivered to your home and business complied with or exceeded all state and federal drinking water regulations. The state requires us to monitor for certain substances less than once per year because the concentrations of these substances do not change frequently; therefore, in these cases the most recent sample data are included. This report contains results from the most recent monitoring which was per-

formed in accordance with the regulatory schedule. TVA is conducting a herbicide spraying program on Guntersville Lake to help control aquatic weeds. For the year 2009 (see TVA chart below) no contaminants

Radiological Contaminants Beta/photon emitters 4 mrem/yr Alpha emitters 15 pCi/l Combined radium 5 pCi/l Uranium 30 pCi/l Inorganic Chemicals 10 ppb Artsenic 10 ppb Asbestos 7 MFL Baryllum 4 ppb Cadmium 5 ppb Baryllum 4 ppb Cadmium 5 ppb Corper AL=1.3 ppm Cyanide 4 ppt Fluoride 4 ppb Lead AL=15.0 ppb Mercury 2 ppb Nitrate 10 ppm Endothall 100 ppm Endothall 100 ppb Endothall 100 ppb Endothall 100 ppb Endothall 100 ppb Heytachloropexide 200 Nanograms/ Heytachloropepontalene 1	Turbidity	й	NTU
Beta/photon emilters 4 mrem/yr Alpha emilters 15 pCi/l Combined radium 5 pCi/l Uranium 30 pCi/l Inorganic Chemicals Antimony 6 ppb Arsenic 10 ppb Asbestos 7 MFL Barium 2 ppm Beryllium 4 ppb Cdmium 5 ppb Condinide 4 ppb Cadmium 5 ppb Condinide 4 ppt Condinide 200 ppb Cyonide 4 ppm Fluoride 4 ppm Lead AL=1.3 ppb Mercury 2 ppb Nitrate 10 ppm Endrin 2 ppb Heytachlor epoxide 400 Nanograms/ Heytachlor poxide 200 Nanograms/ Heytachlorobenzene 1 ppb Heytachlorobenzene 1 ppb Heytachlorobenzene 1 ppb Hexachlorobenol 1 ppb Pelachlorophenol 1 ppb <th>Radiological Contaminants</th> <th></th> <th></th>	Radiological Contaminants		
Antimony Arsenic 6 ppb Arsenic 10 ppb Assestos 7 MFL Barium 2 ppm Beryllium 4 ppb Cadmium 5 ppb Chromium 100 ppb Copper AL=1.3 ppm Evolution 2 ppb Fluoride 400 ppb Lead A ppb Mercury 2 ppb Nitrole 10 ppm Endothall 100 ppb Endothall 100 ppb Heptachlor epoxide 700 ppb Heptachlor epoxide 200 Nanograms/ Hexachlorobydrin TT Fluorebroexplorebrate 1 Hexachlorobycolepentadiene 50 ppb Lindane 200 Nanograms/ Methoxychlor 40 pbb Oxamyl [Vydate] 200 pb Dibromochloropropane<	Beta/photon emitters Alpha emitters Combined radium Uranium	4 15 5 30	mrem/yr pCi/l pCi/l pCi/l
Antimony 6 ppp Arsenic 10 ppb Assenic 10 ppb Barium 2 ppm Beryllium 4 ppb Cadmium 5 ppb Codmium 100 ppb Codmium 100 ppb Codmium 100 ppb Codmium 100 ppb Copper AL=1.3 ppm Lead 4 ppb Mercury 2 ppb Nitrote 10 ppm Endorhall 100 ppb Endorhall 100 ppb Heptochlor TT Glyphosate Heptochlor epoxide 200 Nanograms/ Hestochlorobenzene 1 ppb Lindane 200 Nanograms/ Hexachlorobycolopentadiene 50 ppb Diana 200 ppb Simazine 4 ppb <	inorganic Chemicals	0	
Selenium 50 ppb Thallium 2 ppb	Animony Arsenic Asbestos Barium Cadmium Copper Cyanide Fluoride Lead Mercury Nitrate Endothall Endrin Epichiorohydrin Glyphosate Heptachlor Heptachlor epoxide Heptachlor epoxide Heptachlor epoxide Heptachlor epoxide Heptachlor epoxide Heptachlor epoxide Heptachlor epoxide Heptachlor generation Heptachlor generation Heptachlor epoxide Hexachlorocyclopentadiene Lindane Methoxychlor Oxamyl [Vydate] Pentachlorophenol Picloram Simazine Toxaphene Benzene Carbon tetrachloride Chlorobenzene Dibromochloropropane o-Dichlorobenzene Dibromochloropropane o-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene p-Dichlorobenzene Nitrite Total Nitrate and Nitrite Selenium Thallium	$\begin{smallmatrix} & 6 \\ & 7 \\ & 2 \\ & 4 \\ & 5 \\ & 100 \\ & Al=1.3 \\ & 200 \\ & 4 \\ & AL=15.0 \\ & 2 \\ & 10 \\ & 100 \\ & 2 \\ & 700 \\ & 400 \\ & 200 \\ & 1 \\ & 50 \\ & 200 \\ & 40 \\ & 200 \\ & 1 \\ & 50 \\ & 200 \\ & 40 \\ & 200 \\ & 1 \\ & 50 \\ & 200 \\ & 600 \\ & 75 \\ & 5 \\ & 1 \\ & 10 \\ & 200 \\ & 200 \\ & 600 \\ & 75 \\ & 5 \\ & 1 \\ & 10 \\ & 50 \\ & 2 \\ & 2 \\ & 10 \\ & 10 \\ & 50 \\ & 2 \\ & 10 \\ & 10 \\ & 10 \\ & 2 \\ & 10 \\ & 10 \\ & 10 \\ & 2 \\ & 10 \\ &$	ppp pdb MFL ppb ppb ppb ppm ppb ppm ppb ppb ppb ppb

aulated Contar

1,1-1,1,1 1,1,1 1,2,3 1,2,4 1,2,3 1,2,4 1,3 -1,3,8 2,2 -3-Hy Aldic Aldic

 Dichloropropene 	Aldicarb Sulfoxide	Dibromomethane	N-Prop
,2-Tetrachloroethane	Aldrin	Dicamba	O-Chlo
2,2-Tetrachloroethane	Bromobenzene	Dichlorodifluoromethane	P-Chlo
Dichloroethane	Bromochloromethane	Dieldrin	P-lsop
3 - Trichlorobenzene	Bromodichloromethane	Hexachlorobutadiene	Propa
3 - Trichloropropane	Bromoform	Isopropylbenzene	Sec - I
1 - Trimethylbenzene	Bromomethane	M-Dichlorobenzene	Tert - E
- Dichloropropane	Butachlor	Methomyl	Trichlo
5 - Trimethylbenzene	Carbaryl	MTBE	
- Dichloropropane	Chloroethane	Metolachlor	
droxycarbofuran	Chloroform	Metribuzin	
arb	Chloromethane	N - Butylbenzene	
arb Sulfone	Dibromochloromethane	Naphthalene	

ylbenzene

. rotoluene

otoluene opyltoluene

utylbenzene

utylbenzene

fluoromethan

were found at detectable limits. As you can see by the Table of Detected Drinking Water contaminants, our system had no violations. We have learned through our monitoring and testing that some constituents have been detected. We are pleased to report that our drinking water is safe and meets federal and state requirements. This report shows our water quality and what it means.

TVA Herbicide Testing Results

	Date Sampled	Copper	
Finished	6/04/08	0.014	
Finished	7/02/08	< 0.050	
Finished	8/06/08	< 0.050	
Finished	9/17/08	< 0.050	
Finished	6/10/2009	< 0.050	
Finished	7/15/2009	< 0.050	

Constituent Monitored Date Monitored Inorganic Contaminants 2009 Lead/Copper 2007 **Microbiological Contaminants** current Nitrates 2009 Radioactive Contaminants 2003 Synthetic Organic Contaminants (including pesticides and herbicides) 2007 Volatile Organic Contaminants 2007 **Disinfection By-products** 2009 UCMR2 (Unregulated Contaminant Monitoring Rule) Contaminants 2009 Cryptosporidium 2009